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Abstract Stochastic optimization using simulated annealing has found wide applications in combinatorial 
optimization of NP-complete problems in recent years, especially in VLSI related problems. The Grid Connection 
Problem is a combinatorial optimization problem that is proven to be NP-complete. In this paper the simulated 
annealing algorithm has been applied to the Grid Connection Problem. We also propose an algorithm for the Grid 
Connection Problem based on certain heuristics, Results of our simulations show that while both algorithms do yield 
good solutions, those of the simulated annealing are superior to those of the heuristic algorithm, with rare 
exceptions. 
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1. Introduction 

The problem of connecting a given set of points, called active points located on a grid, by means of 
straight lines to one of the edges of the grid is NP-complete [l] for three or more dimensions [2]. It is also NP- 
Complete for two-dimensional problems when certain restrictions apply [2]. Consequently, seeking out a globally 
optimal solution is rendered computationally infeasible and one is motivated to look for a near optimal solution to 
the problem in a reasonable amount of computational time rather than perform a near-exhaustive search on the entire 
solution space. To the best of our knowledge, there is no algorithm that attempts to obtain such near-optimal 
connections. In this paper we propose two algorithms for the same purpose, which are discussed at length in sections 
2 and 3. In the remainder of this paper, we shall, for the sake of conciseness, refer to the problem as the Grid 
Connection Problem (GCP). In this section, we provide a formal definition for the Grid Connection Problem. 

An instance of the Grid Connection Problem is (i) an n-dimensional grid of size l,x12..la, and (ii) a set of 
active points at specific locations in the grid, C = (P,.(q, x,, .. x,)l x, is an integer and 15x jS lp ) .  Each point in c is 
to be connected by means of a straight line to one of the several faces of the grid. An intersection of the straight line 
connections between any two points constitutes a violation. When portions of two straight line connections coincide 
for a certain (integral) length, the total number of violations is simply this length. Figure 1. shows a 6x6 grid with 
six active points and with violations at four different points as indicated by arrows. The objective of the GCP is to 
connect all active points in the grid to the sides with the least possible number of violations. The relevance of GCP 
in VLSI routing is immediately obvious. 

2. A Heuristic Algorithm 

In this section, we present a heuristic algorithm which is, in a restricted sense, greedy. Our algorithm can 
be applied to problems of any dimension. We observe that points that are closer to the center of the grid are 
potentially capable of causing a larger number of violations than those that are near the faces of the grid. Also, 
reducing the length of a line connecting an active point to a face should result in lower number of violations. Hence 
we propose the following two heuristics: 

1. Points that are closer to the center of the grid are lower in the priority list of the algorithm than those 
near the faces of the grid. 

2. The algorithm has a preference for connecting points to the face of the grid that is closest. 
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Within the framework of these two heuristics, the algorithm performs as follows. In the first pass it tries 
to connect as many points as possible without any violation. In subsequent passes it'tries to connect the unconnected 
active points with incmsing number of violations. An outline of the heuristic algorithm is provided below : 

C = 
mUX-0 
while (E# a) { 

qj ,..., x,,,)/ Pi is an active point.} 

V Pi E C let (C,', Ci ,..., CL) = (F, F ,..., F) 
while (another connection is possible) { 

pick Pj E 

if (violations with Pi connected along k"c coordinate = max) 

such that V i x l  = mi&, x j  ,...,, x,,j) 

S min(min(x,i, x,', ..., x,,')) and C:' = F 

connect Pj along k"c coordinate 
C = C - {PJ 

else 
C, = T 

Figure 1. A 6x6 two dimensional instance of GCP with 6 active points and 4 violations. 

At any stage in the algorithm, C is the set of unconnected active points. As points get connected, they are 
removed from C. The variable lllcu~ contains the maximum number of violations that is permitted while connecting 
an active point. It is initialized to zero before the first pass of the algorithm and incremented by one at the beginning 
of each subsequent pass of the algorithm. This increment implies that after exhausting all the points that could be 
connected with a specific number of violations, the algorithm should then attempt to connect the remaining active 
points with one more allowable violation, in the next pass. For each unconnected active point Pi in C. the algorithm 
maintains an n-tuple of flags ( Cj,  Ci ,..., CL). At the beginning of each pass, it is updated to (F, F ,..., F). If the point 
Pj cannot be connected along a certain direction, say the kth direction, during a certain pass of the algorithm, the 
latter should then not attempt to connect it again along the same direction in the remainder of the algorithm. "'his 
is done by updating the corresponding flag C; to T. When the algorithm picks a point for connection along any 
direction, it checks to see if the corresponding flag is F. The algorithm halts only after C is empty i.e. when all the 
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active points have been connected. Having provided a formal description of the heuristic algorithm, we now provide 
an upper bound on its worst case time complexity. 

Lemma. The worst case time-complexity of the heuristic algorithm is O(pdn) .  

Proof: The maximum number of violations can occur in an instance of GCP only when all the active points are 
aligned and their straight line connections coincide for the maximum possible length. Such a case occurs only in the 
highly improbable situation of all the active points being in adjacent locations. If N is the number of active points 
and d the length of the grid along the dimension through which the connections run, then clearly the number of 
violations is E. To obtain this many number of violations, obviously the algorithm has to go through the same 
number of passes. In each pass of the algorithm it can perform a maximum of N iterations, each with n steps, where 
n is the dimensionality of the grid. Since each iteration is of O(Nz), the worst case time complexity is O(N5dn). H 

Results obtained by executing the heuristic algorithm on different instances of the GCP (for various grid 
sizes and active points densities) are presented in Section 4. 

3. Simulated Annealing for Grid Connection 

The problem of connecting active points in a grid by means of straight lines is particularly suitable for 
simulated annealing [3] for it is trivially shown to be strongly irreducible, by the facts that it has only a finite number 
of possible configurations and that each configGation is attainable from any other configuration with a finite number 
of moves [4]  [5] [6] [7] [8]. Our choice of simulated annealing as an approach is also partially motivated by the fact 
that it has very few requirements, and can be adapted easily to any other version of the problem merely by changing 
the energy function or the move selection strategy accordingly. We devote this section to a description of our 
approach. An outline of the well known double loop version of simulated annealing algorithm is presented below. 

T = T -  
C = Initial configuration 
while (stopping condition is not satisfied) { 

for i = 1 to maximum # of iterations { 
mve(C,C,,,) 
AE = Energy(C,, 1 - energy(C) 
if(= < 0) or (e-m > random(0,l)) 

c = c,,, 
1 
T = aT 

1 

3.1 Initial Configuration 

The initial configuration was generated randomly. A greedy algorithm was also tried to generate the initial 
configuration but was later abandoned in favor of a random configuration as the former proved to be ineffective in 
reducing the amount of computation time. 

3.2 Annealing Schedule 

A good annealing schedule is of critical importance. Experimentally we found out that for an instance of 
GCP with n active points, a value of T,, numerically equal to n/4 itself yields the best possible result. Any higher 
value for T,, does not result in any improvement on the outcome of the algorithm, whereas any further reduction 
in the starting temperature results in a deterioration of the quality of the final solution. 
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Figure 3. A sample annealing curve. 

We adopted the well known double loop version of simulated annealing. We chose a simple geometric 
cooling schedule. Our results suggest that an optimal value for a (the cooling factor) is 0.9. A sample annealing 
curve from our simulation experiments is shown in Figure 3. We bring the algorithm to a stop when the slope of 
the annealing curve reaches zero, rather than basing it purely on a prefixed temperature value. Between each 
temperature drop we found that letting the algorithm iterate 5n times (where n is the number of active points on the 
grid) allows thermal equilibrium to be established without executing far too many iterations. 

3.3 Move Generation 

A move in simulated annealing results in a transition from the current configuration to a neighboring 
configuration within the solution space. Depending upon the control parameters, the new configuration may or may 
not be accepted. At each stage of the algorithm, the total number of violations is taken to be the energy of the system 
that needs to be minimized. Moves are generated by randomly picking an active point, and changing the face to 
which it is connected by rolling a die. This alteration defines the new configuration. Variation on the number of 
violations is calculated. A decrease in the number of violations leads to the acceptance of the move. If the move has 
resulted in an increase of the energy level, the move is accepted if the e-- value is greater than a random number 
picked between 0 and 1. It is easily seen that moves resulting in higher energy level will be accepted easily at higher 
temperature and the probability of such moves being accepted will continue to decrease as the temperature is 
decreased. 

4. Simulation Results 

In this section, we discuss the results of the simulations we carried out. Table 1 below, presents the results 
of the simulation using the heuristic algorithm. 
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Table 1. Results of the simulation using the Heuristic Algorithm. 

We considered grids of three different size. They were 10~10x10 (lo00 points), 15x15~15 (3380 points), 
and 20~20x20 (8000 points). For each grid size, we ran the simulations with active points to the total grid size ratio 
(active points density) of 5. 10, 20 and 40 percent. These active points were randomly located on the grid. At each 
percentage level we ran the simulation ten times in order to get a clear idea of each algorithm’s performance. The 
minimum, maximum and the average number of violations encountered for each algorithm was noted. 

Table 2 below presents the results obtained for the same set of conditions by simulated annealing. The initial 
average number of violations is the average number of violations obtained during the initial configuration for the ten 
runs executed. when the active points were connected to any one of the six sides randomly. Minimum and maximum 
number of violations are the least and most number of violations observed at the end of the experiment among the 
ten trials Carried out. The last column in the table presents the average number of violations observed in the final 
solutions of the ten trial runs. Comparing Tables 1 and 2, we observe that the heuristic algorithms performs slightly 
better than simulated annealing when the active points density is extremely high, whereas annealing yields much 
better results than the heuristic algorithm for all other cases. Table 2 also presents the details of the cooling schedule. 
For each configuration, we provide the average maximum and minimum temperature for each case and the average 
number of iterations it took to converge to the solution. 

5. Conclusions 

We presented two algorithms that yield a near optimal solution for the Grid Connection Problem. 
Experiments canied out using the algorithms show that simulated annealing performs better than the heuristic 
algorithm proposed in most of the cases. In cases where the active points density is very high, the heuristic algorithm 
performs marginally better than the simulated annealing algorithm. Since the GCP problem itself has been posed very 
recently, there are, to the best of our knowledge, no other algorithms available for comparison. As a direction for 
further research, one might consider situations where neighbouring lines connecting active points, that run parallel 
are also considered as violations (of a less serious nature) even though they do not intersect each other. One could 
also apply either algorithm to a restricted version of GCP where the active points can be connected only to a limited 
number of faces. 
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Grid No. of Active No. of Violations Avg. Temperature Avg. No. of 
Size active Points Iterations 

Table 2. Results of the simulation using the simulated annealing algorithm. 
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